Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Coral reefs experience numerous natural and anthropogenic environmental gradients that alter biophysical conditions and affect biodiversity. While many studies have focused on drivers of reef biodiversity using traditional diversity metrics (e.g., species richness, diversity, evenness), less is known about how environmental variability may influence functional diversity. In this study, we tested the impact of submarine groundwater discharge (SGD) on taxonomic and functional diversity metrics in Mo‘orea, French Polynesia. SGD is the expulsion of terrestrial fresh or recirculated seawater into marine environments and is associated with reduced temperatures, pH, and salinity and elevated nutrient levels. Using a regression approach along the SGD gradient, we found that taxon and functional-entity richness displayed unimodal relationships to SGD parameters, primarily nitrate + nitrite and phosphate variability, with peak richness at moderate SGD for stony coral and the full benthic community. Macroalgae showed this unimodal pattern for functional-entity but not taxonomic richness. Functional community composition (presence and abundance of functional entities) increased along the gradient, while taxonomic composition showed a nonlinear relationship to SGD-related parameters. SGD is a common feature of many coastal ecosystems globally and therefore may be more important to structuring benthic functional diversity than previously thought. Further, studying community shifts through a functional-trait lens may provide important insights into the roles of community functions on ecosystem processes and stability, leading to improved management strategies.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae,Halimeda opuntiaandValonia fastigiata,by 67 and 200%, respectively, and one coral,Porites rus,by 20%. Community metabolic rates showed altered community production, respiration and calcification between naturally high and low exposure areas mostly due to differences in community identity (i.e. species composition), rather than a direct effect of SGD on physiology. Production and calcification were 1.5 and 6.5 times lower in assemblages representing high SGD communities regardless of environment. However, the compounding effect of community identity and SGD exposure on respiration resulted in the low SGD community exhibiting the highest respiration rates under higher SGD exposure. By demonstrating SGD’s role in altering community composition and metabolism, this research highlights the critical need to consider compounding environmental gradients (i.e. nutrients, salinity and temperature) in the broader context of ecosystem functions.more » « less
-
Jones (Ed.)The addition of terrestrial inputs to the ocean can have cascading impacts on coastal biogeochemistry by directly altering the water chemistry and indirectly changing ecosystem metabolism, which also influences water chemistry. Here, we use submarine groundwater discharge (SGD) as a model system to examine the direct geochemical and indirect biologically mediated effects of terrestrial nutrient subsidies on a fringing coral reef. We hypothesize that the addition of new solutes from SGD alters ecosystem metabolic processes including net ecosystem production and calcification, thereby changing the patterns of uptake and release of carbon by benthic organisms. SGD is a common land–sea connection that delivers terrestrially sourced nutrients, carbon dioxide, and organic matter to coastal ecosystems. Our research was conducted at two distinct coral reefs in Moʻorea, French Polynesia, characterized by contrasting flow regimes and SGD biogeochemistry. Using a Bayesian structural equation model, our research elucidates the direct geochemical and indirect biologically mediated effects of SGD on both dissolved organic and inorganic carbon pools. We reveal that SGD‐derived nutrients enhance both net ecosystem production and respiration. Furthermore, the study demonstrates that SGD‐induced alterations in net ecosystem production significantly influence pH dynamics, ultimately impacting net ecosystem calcification. Notably, the study underscores the context‐dependent nature of these cascading direct and indirect effects resulting from SGD, with flow conditions and the composition of the terrestrial inputs playing pivotal roles. Our research provides valuable insights into the interplay between terrestrial inputs and coral reef ecosystems, advancing our understanding of coastal carbon cycling and the broader implications of allochthonous inputs on ecosystem functioning.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Nutrient availability drives community structure and ecosystem processes, especially in tropical lagoons that are typically oligotrophic but often receive allochthonous inputs from land. Terrestrially derived nutrients are introduced to tropical lagoons by surface runoff and submarine groundwater discharge, which are influenced by seasonal precipitation. However, terrigenous inputs presumably diminish along the onshore–offshore gradients within lagoons. We characterized nutrient availability in the lagoons of a tropical high island, Moorea, French Polynesia, using spatially distributed measurements of nitrogen content in the tissues of a widespread macroalga during the rainy season over 4 yr. We used synoptic water column sampling to identify associations among macroalgal nutrient content and the composition of inorganic macronutrients, dissolved organic matter, and microbial communities. We paired these data with quantifications of land use in nearby watersheds to uncover links between terrestrial factors, aquatic chemistry, and microbial communities. Algal N content was highest near shore and near large, human‐impacted watersheds, and lower at offshore sites. Sites with high algal N had water columns with high nitrite + nitrate, silicate, and increased humic organic matter (based on a fluorescence Humification Index), especially following rain. Microbial communities were differentiated among nearshore habitats and covaried with algal N and water chemistry, supporting the hypothesis that terrigenous nutrient enrichment shapes microbial dynamics in otherwise oligotrophic tropical lagoons. This study reveals that land–sea connections create nutrient subsidies that are important for lagoon biogeochemistry and microbiology, indicating that future changes in land use or precipitation will modify ecosystem processes in tropical lagoons.more » « lessFree, publicly-accessible full text available October 30, 2026
An official website of the United States government
